--> load ( ezunits ) ;

\[\tag{%o1} C:/maxima-5.44.0/share/maxima/5.44.0/share/ezunits/ezunits.mac\]

12 Verschraubung Druckbehälter

1 Dimensionieren Sie die Flanschschrauben überschlägig auf der Grundlage, dass die maximale Schraubenkraft die Schrauben maximal lediglich zu 90% der Streckgrenze vorspannen soll.

1.1 Gegeben Werte:

Gesamtbetriebskraft
--> F_B : 300 · 1000 ` N ;

\[\tag{F\_ B} 300000\mathit{ ` }N\]

Aluminiumdeckel mit einem E-Modul
--> E_p : 122 / 100 · 10 ^ 5 ` N / mm ^ 2 ;

\[\tag{E\_ p} 122000\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

6Schrauben
--> z : 6 ;

\[\tag{z} 6\]

Drehmomentschlüssel Anziehfaktor A aus Tabelle
--> A : 8 / 5 ;

\[\tag{A} \frac{8}{5}\]

Restklemmkraft
--> F_Kerf : 1000 ` N ;

\[\tag{F\_ Kerf} 1000\mathit{ ` }N\]

1.2 F_BS Betriebskraft (pro Schraube)

--> F_BS : F_B / z ;

\[\tag{F\_ BS} 50000\mathit{ ` }N\]

1.3 F_max Maximale Schraubenkraft

--> F_max : A · ( F_Kerf + F_BS ) ;

\[\tag{F\_ max} 81600\mathit{ ` }N\]

1.4 R_e 90% der Streckgrenze

--> eq : F_max = 9 / 10 · R_e ;

\[\tag{eq} 81600\mathit{ ` }N=\frac{9 {R_e}}{10}\]

--> solve ( eq , R_e ) ; R_e : rhs ( % [ 1 ] ) ; float ( R_e ) ;

\[\tag{%o10} [{R_e}=\frac{272000}{3}\mathit{ ` }N]\]

\[\tag{R\_ e} \frac{272000}{3}\mathit{ ` }N\]

\[\tag{%o12} 90666.66666666667\mathit{ ` }N\]

In der Tabelle eine Schraube mit >N in der richtigen Festigkeitsklasse auswählen: M16x2 8.8 -> 100kN

2 Ermitteln Sie die erforderliche Vorspannkraft der Schrauben.

Montageverspannkraft, Betriebskraftanteil Platten, Restklemmkraft, Setzkraftverluste
F_VMerf: F_BP+F_Kerf+F_Z;
F_VMerf: (1-ϕ)*F_B+F_Kerf+F_Z
ϕ=n*ϕ'=n*c_s/(c_s+c_p);
n=l_entlastet/l_k; l_k gesamte Klemmlänge

2.1 n Krafteinleitungsfaktor - entlastete Klemmlänge zur Gesamtlänge

aus der Zeichnung entnehmen, aufpassen was ist belastet und was ist entlastet! Belasteter Teil wurde angegeben...
--> n : ( l_k 1 / 4 · l_k ) / l_k ;

\[\tag{n} \frac{3}{4}\]

2.2 Steifigkeit der Platten c_p:E_p*A_ers/l_k

2.2.1 Ersatzquerschnitt A_ers fehlt nur noch

Bohrungsdurchmesser d_h empfohlen M16 Tabellenbuch entnehmen
--> D_A : 60 ` mm ; d_w : 24 ` mm ; l_k : 100 ` mm ; d_h : 17 . 5 ` mm ;

\[\tag{D\_ A} 60\mathit{ ` }\mathit{mm}\]

\[\tag{d\_ w} 24\mathit{ ` }\mathit{mm}\]

\[\tag{l\_ k} 100\mathit{ ` }\mathit{mm}\]

\[\tag{d\_ h} 17.5\mathit{ ` }\mathit{mm}\]

2.2.2 Welcher Fall?!

--> d_w D_A ; /*positiv = 1.Fall*/

\[\tag{%o18} \left( -36\right) \mathit{ ` }\mathit{mm}\]

--> d_w + l_k D_A ; D_A d_w ; /*positiv = 2.Fall*/

\[\tag{%o19} 64\mathit{ ` }\mathit{mm}\]

\[\tag{%o20} 36\mathit{ ` }\mathit{mm}\]

--> D_A d_w l_k ; /*positiv = 2.Fall*/

\[\tag{%o21} \left( -64\right) \mathit{ ` }\mathit{mm}\]

2.2.3 A_ers 2. Fall

--> x : ( l_k · d_w / D_A ^ 2 ) ^ ( 1 / 3 ) ; A_ers : %pi / 4 · ( d_w ^ 2 d_h ^ 2 ) + %pi / 8 · d_w · ( D_A d_w ) · ( ( x + 1 ) ^ 2 1 ) ; float ( % ) ;

\[\tag{x} \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}\]

\[\tag{A\_ ers} \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) \mathit{ ` }{{\mathit{mm}}^{2}}\]

\[\tag{%o24} 1063.587153719137\mathit{ ` }{{\mathit{mm}}^{2}}\]

2.2.4 c_p Steifigkeit der Platten

--> c_p : E_p · A_ers / l_k ; float ( % ) ;

\[\tag{c\_ p} 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) \mathit{ ` }\frac{N}{\mathit{mm}}\]

\[\tag{%o26} 1297576.327537348\mathit{ ` }\frac{N}{\mathit{mm}}\]

2.3 Steifigkeit der Schraube 1/c_s: 1/c_Kopf+1/c_Schaft+1/c_Gewinde+1/c_Mutter;

Abschnitte der Schraube betrachten, Summe der Kehrwerte: Kopf, Schaft, Gewinde Frei, Gewinde eingeschraubt in der "Mutter"
1/c_s:l/(E_s*d^2*%pi/4) - Kein (großer) Schaft

2.3.1 gegeben/besorgte Werte

M16 in Aufgabe 1 ausgerechnet: d=16[mm], Tabelle gucken für A_3, A_N beide, Schrauben wohl aus Stahl für E-Modul
--> d : 16 ` mm ; A_N : 157 ` mm ^ 2 ; A_3 : 144 ` mm ^ 2 ; E_s : 210000 ` N / mm ^ 2 ;

\[\tag{d} 16\mathit{ ` }\mathit{mm}\]

\[\tag{A\_ N} 157\mathit{ ` }{{\mathit{mm}}^{2}}\]

\[\tag{A\_ 3} 144\mathit{ ` }{{\mathit{mm}}^{2}}\]

\[\tag{E\_ s} 210000\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

2.3.2 δ_s Nachgiebigkeit der Schraube

--> δ_s : 1 / E_s · ( d / 2 / A_N + l_k / A_3 + d / 2 / A_N ) ; float ( % ) ;

\[\tag{\ensuremath{\delta}\_ s} \frac{\frac{{l_k}}{{A_3}}+\frac{d}{{A_N}}}{{E_s}}\]

\[\tag{%o4} \frac{\frac{{l_k}}{{A_3}}+\frac{d}{{A_N}}}{{E_s}}\]

2.3.3 c_s Steifigkeit der Schraube

--> c_s : ( 1 / E_s · ( d / 2 / A_N + l_k / A_3 + d / 2 / A_N ) ) ^ 1 ; float ( % ) ;

\[\tag{c\_ s} \frac{169560000}{643}\mathit{ ` }\frac{N}{\mathit{mm}}\]

\[\tag{%o34} 263701.399688958\mathit{ ` }\frac{N}{\mathit{mm}}\]

1/c_s:1/E_s*(d/2/A_N+l_k/A_3+d/2/A_N); float(%);

2.4 ϕ und ϕ'

--> ϕ_Strich : c_s / ( c_s + c_p ) ; float ( % ) ;

\[\tag{ϕ\_ Strich} \frac{169560000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\]

\[\tag{%o36} 0.1689010193961057\]

--> ϕ : n · ϕ_Strich ; float ( % ) ;

\[\tag{ϕ} \frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\]

\[\tag{%o38} 0.1266757645470792\]

2.5 Setzkraft F_Z

2.5.1 Gesamtsetzbetrag s

Aufgrund der Oberflächenrauheit soll in Trennfugen von 4 µm und im
Gewinde von 5 µm Setzbetrag ausgegangen werden
Fugen: Kopf-Platte, Platte-Platte + Gewinde
--> s : ( 2 · 4 + 5 ) / 1000 ` mm ;

\[\tag{s} \frac{13}{1000}\mathit{ ` }\mathit{mm}\]

2.5.2 F_Z Setzkraft

--> F_Z : s · ϕ_Strich · c_p ; float ( % ) ;

\[\tag{F\_ Z} \frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\mathit{ ` }N\]

\[\tag{%o41} 2849.105538049071\mathit{ ` }N\]

2.6 F_VMerf Montagevorspannkraft

Aufpassen N vs. kN
--> F_VMerf : ( 1 ϕ ) · F_BS + F_Kerf + F_Z ; float ( % ) ;

\[\tag{F\_ VMerf} \operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)}\mathit{ ` }N\]

\[\tag{%o43} 47515.31731069511\mathit{ ` }N\]

3 Wie groß kann die Montagevorspannkraft maximal ausfallen?

3.1 Maximale Montagevorspannkraft F_VMmax

Anziehfaktor mit Drehmomentschlüssel
--> F_VMmax : A · F_VMerf ; float ( % ) ;

\[\tag{F\_ VMmax} \frac{8 }{5}\operatorname{(}8 \operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)}\operatorname{)}/5\mathit{ ` }N\]

\[\tag{%o45} 76024.50769711217\mathit{ ` }N\]

4 Überprüfen Sie, ob die Schraubenverbindung nach Teilaufgabe 1 unter dem Blickwinkel des dynamischen Behälterinnendruckes ausreichend ausgelegt ist.

Druck von 0 bis max, also κ=0 (schwellend): σ_m=σ_a=σ_max/2
σ_a: 1/2*F_BS/A_S=1/2*(ϕ*F_B)/A_S
--> A_S : 157 ` mm ^ 2 ;

\[\tag{A\_ S} 157\mathit{ ` }{{\mathit{mm}}^{2}}\]

4.1 Spannungsamplitude σ_a

--> σ_a : 1 / 2 · ( ϕ · F_BS ) / A_S ; float ( % ) ;

\[\tag{\ensuremath{\sigma}\_ a} \frac{20250000000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

\[\tag{%o48} 20.17130008711453\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

4.2 Dauerhaltbarkeit σ_zul

In der Tabelle ablesen mit Festigkeitsklasse und Gewindedurchmesser
--> σ_zul : 40 ` N / mm ^ 2 ;

\[\tag{\ensuremath{\sigma}\_ zul} 40\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

--> float ( σ_zul / σ_a ) ;

\[\tag{%o50} 1.983015463914103\]

Ja sie ist Dauerfest ansgelegt (>1)

5 Mit welchem Drehmoment sind die Schrauben anzuziehen?

M: F_VMerf*(d_2/2*tan(φ+ρ)+µ_k*r_m)

5.1 Werte gegeben/Tabellenbuch

Reibwert µ []: gegeben; Flankendurchmesser d_2 [mm]: Tabellenbuch;Gewindesteigung P [mm]: Tabellenbuch;
--> µ : 14 / 100 ; d_2 : 14701 / 1000 ` mm ; P : 2 ` mm ;

\[\tag{µ} \frac{7}{50}\]

\[\tag{d\_ 2} \frac{14701}{1000}\mathit{ ` }\mathit{mm}\]

\[\tag{P} 2\mathit{ ` }\mathit{mm}\]

5.2 Steigungswinkel des Gewindes φ

--> φ : atan ( P / ( %pi · d_2 ) ) ; float ( % · 180 / %pi ) ` ° ; /*Radient to Degree: *180/%pi*/

\[\tag{\ensuremath{\phi}} \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) \]

\[\tag{%o55} 2.479617103698885\mathit{ ` }°\]

5.3 Reibungswinkel des Gewindes ρ

--> ρ : atan ( µ ) ; float ( % · 180 / %pi ) ` ° ; /*Radient to Degree: *180/%pi*/

\[\tag{\ensuremath{\rho}} \operatorname{atan}\left( \frac{7}{50}\right) \]

\[\tag{%o57} 7.96961039432136\mathit{ ` }°\]

5.4 Reibwert zwischen Schraubenkopf und Auflage µ_k

--> µ_k : 14 / 100 /*"ist eben falls 0,14"*/ ;

\[\tag{µ\_ k} \frac{7}{50}\]

5.5 Mittlerer Kopfauflagedurchmesser r_m

Schlüsselweite: S_W [mm]: Tabellenbuch für M16;
--> S_W : 24 ` mm ;

\[\tag{S\_ W} 24\mathit{ ` }\mathit{mm}\]

--> r_m : ( S_W + d_h ) / 4 ;

\[\tag{r\_ m} 10.375\mathit{ ` }\mathit{mm}\]

5.6 Anzugsdrehmoment M

--> M : F_VMerf · ( d_2 / 2 · tan ( φ + ρ ) + µ_k · r_m ) ; float ( % ) ; /*Radient to Degree not needed*/

\[\tag{M} \operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)} \left( \frac{14701 \tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }}{2000}+1.4525\right) \mathit{ ` }N\, \mathit{mm}\]

\[\tag{%o62} 133427.6856463245\mathit{ ` }N\, \mathit{mm}\]

6 Wird die statische Beanspruchungsgrenze von 90% der Streckgrenze durch die statische Vergleichsspannung
tatsächlich nicht überschritten?

Schrauben auf Zug beansprucht dazu Torsion vom Anziehen, Gestaltänderungsenergiehypothese σ_v: sqrt(σ_z^2+3*τ_t^2)

6.1 Maximale Schraubenkraft auf den Spannungsquerschnitt σ_z

σ_z: F_Smax/A_S=(F_VMmax+ϕ*F_BS)/A_S
--> σ_z : ( F_VMmax + ϕ · F_BS ) / A_S ; float ( % ) ;

\[\tag{\ensuremath{\sigma}\_ z} \frac{\frac{8 \left( \frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\right) }{5}+\frac{6358500000000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }}{157}\operatorname{(}\frac{8 \left( \frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\right) }{5}\left( 8 \left( \frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\right) \right) /5+\frac{6358500000000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\operatorname{)}/157\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

\[\tag{%o64} 524.5751332768543\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

6.2 Torsionsspannung τ_t: M_t/W_t [N/mm^2]

6.2.1 Torsionsmoment M_t [Nmm]

Nur der Gewindeteil, der Kopfteil wird weggelassen
--> M_t : F_VMmax · d_2 / 2 · tan ( φ + ρ ) ; float ( % ) ;

\[\tag{M\_ t} \frac{14701 \tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }}{1250}\operatorname{(}14701 \operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)} \tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }\operatorname{)}/1250\mathit{ ` }N\, \mathit{mm}\]

\[\tag{%o66} 103058.6996040637\mathit{ ` }N\, \mathit{mm}\]

6.2.2 Widerstandsmoment W_t: %pi*d_s^3/16 [mm^3]

6.2.2.1 Der zum Spannungsdurchschnitt gehörige Durchmesser d_s

Alternativ Tabellenbuch
--> kill ( d_s ) ; eq : A_S = %pi · d_s ^ 2 / 4 ; solve ( eq , d_s ) ; d_s : rhs ( % [ 2 ] ) ; float ( % ) ;

\[\tag{%o67} \mathit{done}\]

\[\tag{eq} 157\mathit{ ` }{{\mathit{mm}}^{2}}=\frac{\ensuremath{\pi} {{{d_s}}^{2}}}{4}\]

\[\tag{%o69} [{d_s}=\left( -\frac{2 \sqrt{157}}{\sqrt{\ensuremath{\pi} }}\right) \mathit{ ` }\mathit{mm}\operatorname{,}{d_s}=\frac{2 \sqrt{157}}{\sqrt{\ensuremath{\pi} }}\mathit{ ` }\mathit{mm}]\]

\[\tag{d\_ s} \frac{2 \sqrt{157}}{\sqrt{\ensuremath{\pi} }}\mathit{ ` }\mathit{mm}\]

\[\tag{%o71} 14.13855043925722\mathit{ ` }\mathit{mm}\]

6.2.2.2 W_t Widerstandsmoment

--> W_t : %pi · d_s ^ 3 / 16 ; float ( % ) ;

\[\tag{W\_ t} \frac{{{157}^{\frac{3}{2}}}}{2 \sqrt{\ensuremath{\pi} }}\mathit{ ` }{{\mathit{mm}}^{3}}\]

\[\tag{%o73} 554.938104740846\mathit{ ` }{{\mathit{mm}}^{3}}\]

6.2.3 τ_t Torsionsspannung

--> τ_t : M_t / W_t ; float ( % ) ;

\[\tag{\ensuremath{\tau}\_ t} \frac{14701 {{157}^{-\frac{3}{2}}}\, {{\ensuremath{\pi} }^{\frac{1}{2}}} \tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }}{625}\operatorname{(}14701 {{157}^{-\frac{3}{2}}}\, {{\ensuremath{\pi} }^{\frac{1}{2}}} \operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)} \tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }\operatorname{)}/625\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

\[\tag{%o75} 185.7120618022649\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

6.3 σ_v Vergleichsspannnung

--> σ_v : sqrt ( σ_z ^ 2 + 3 · τ_t ^ 2 ) ; float ( % ) ;

\[\tag{\ensuremath{\sigma}\_ v} \operatorname{sqrt(}\frac{648358203 {{157}^{-3}}\, {{\ensuremath{\pi} }^{1}}\, {{}^{2}}\, {{\tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }}^{2}}}{390625}\operatorname{(}648358203 {{157}^{-3}}\, {{\ensuremath{\pi} }^{1}}\, {{}^{2}}\operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)}\operatorname{^}2 {{\tan{\left( \operatorname{atan}\left( \frac{2000 {{\ensuremath{\pi} }^{-1}}}{14701}\right) +\operatorname{atan}\left( \frac{7}{50}\right) \right) }}^{2}}\operatorname{)}/390625+\frac{{{}^{2}}}{24649}{{}^{2}}\operatorname{(}\frac{8 }{5}\operatorname{(}8 \operatorname{(}\frac{2689221600 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) }{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }+50000 \left( 1-\frac{127170000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\right) +1000\operatorname{)}\operatorname{)}/5+\frac{6358500000000}{643 \left( 1220 \left( 108 \left( {{\left( \frac{{{2}^{\frac{1}{3}}}}{{{3}^{\frac{1}{3}}}}+1\right) }^{2}}-1\right) \ensuremath{\pi} +67.4375 \ensuremath{\pi} \right) +\frac{169560000}{643}\right) }\operatorname{)}\operatorname{^}2/24649\operatorname{)}\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

\[\tag{%o81} 615.3421650992025\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

6.4 Zulässige Spannung σ_zul 90% R_e

6.4.1 R_p0,2 Ersatzstreckgrenze mit Festigkeitsklasse 8.8

--> R_p2 : 8 · 8 · 10 ` N / mm ^ 2 ;

\[\tag{R\_ p2} 640\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

6.4.2 σ_zul Zulässige Spannung

--> σ_zul : 9 / 10 · R_p2 ;

\[\tag{\ensuremath{\sigma}\_ zul} 576\mathit{ ` }\frac{N}{{{\mathit{mm}}^{2}}}\]

6.4.3 Verhältnis σ_v/σ_zul

--> σ_v / σ_zul ; float ( % ) ;

\[\tag{%o82} \frac{}{576}\]

\[\tag{%o83} 1.068302369963893\]

Ist mit 0.97 noch knapp dadrunter, aber Prof hat 660N/mm^2 raus, also bei ihm zuviel...

7 Wie kann der Deckel umkonstruiert werden, damit die aus der Betriebskraft resultierende Spannungsamplitude in der Schraube abnimmt?

Spannungsamplitude σ_a [N/mm^2]
σ_a: 1/2*(ϕ*F_BS)/A_S;
Nicht SChrauben verändenr oder die Betriebskraft, somit bleibt ϕ
ϕ_Strich: c_s/(c_s+c_p); float(%);
ϕ:n*ϕ_Strich; float(%);
Nich Platte oder SChraube ändern somit bleibt: Krafteinleitungsfaktor n
n:(l_k-1/4*l_k)/l_k;
Der entlastete Anteil muss kleiner werden um die Spannungsamplitude zu verringern: den Deckel flacher ausbilden!
--> sort ( values ) ;

\[\tag{%o101} [A\operatorname{,}{A_3}\operatorname{,}{A_N}\operatorname{,}{A_S}\operatorname{,}{A_{\mathit{ers}}}\operatorname{,}{D_A}\operatorname{,}{E_p}\operatorname{,}{E_s}\operatorname{,}{F_B}\operatorname{,}{F_{\mathit{BS}}}\operatorname{,}{F_{\mathit{Kerf}}}\operatorname{,}{F_{\mathit{VMerf}}}\operatorname{,}{F_{\mathit{VMmax}}}\operatorname{,}{F_Z}\operatorname{,}{F_{\mathit{max}}}\operatorname{,}M\operatorname{,}{M_t}\operatorname{,}P\operatorname{,}{R_e}\operatorname{,}{R_{\mathit{p2}}}\operatorname{,}{S_W}\operatorname{,}{W_t}\operatorname{,}{c_p}\operatorname{,}{c_s}\operatorname{,}d\operatorname{,}{d_2}\operatorname{,}{d_h}\operatorname{,}{d_s}\operatorname{,}{d_w}\operatorname{,}\mathit{eq}\operatorname{,}\mathit{fooexpr}\operatorname{,}\mathit{fundamental\_ dimensions}\operatorname{,}\mathit{known\_ unit\_ conversions}\operatorname{,}{l_k}\operatorname{,}n\operatorname{,}{r_m}\operatorname{,}s\operatorname{,}x\operatorname{,}z\operatorname{,}µ\operatorname{,}{µ_k}\operatorname{,}{{\delta }_s}\operatorname{,}\rho \operatorname{,}{{\sigma }_a}\operatorname{,}{{\sigma }_v}\operatorname{,}{{\sigma }_z}\operatorname{,}{{\sigma }_{\mathit{zul}}}\operatorname{,}{{\tau }_t}\operatorname{,}\phi \operatorname{,}ϕ\operatorname{,}{ϕ_{\mathit{Strich}}}]\]

-->
-->

Created with wxMaxima.